Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.586
Filtrar
1.
CNS Neurosci Ther ; 30(4): e14721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644578

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aß (ß-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPß in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS: Several studies have demonstrated an elevation in the expression level of C/EBPß among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPß expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPß can be a new therapeutic target for AD. METHODS: A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS: Overexpression of C/EBPß exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION: The correlation between overexpression of C/EBPß and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPß regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPß overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION: The overexpression of C/EBPß accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPß plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPß could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.


Assuntos
Doença de Alzheimer , Proteína beta Intensificadora de Ligação a CCAAT , Progressão da Doença , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Animais , Peptídeos beta-Amiloides/metabolismo
2.
Mol Cancer ; 23(1): 63, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528526

RESUMO

Efficient predictive biomarkers are needed for immune checkpoint inhibitor (ICI)-based immunotherapy in non-small cell lung cancer (NSCLC). Testing the predictive value of single nucleotide polymorphisms (SNPs) in programmed cell death 1 (PD-1) or its ligand 1 (PD-L1) has shown contrasting results. Here, we aim to validate the predictive value of PD-L1 SNPs in advanced NSCLC patients treated with ICIs as well as to define the molecular mechanisms underlying the role of the identified SNP candidate. rs822336 efficiently predicted response to anti-PD-1/PD-L1 immunotherapy in advanced non-oncogene addicted NSCLC patients as compared to rs2282055 and rs4143815. rs822336 mapped to the promoter/enhancer region of PD-L1, differentially affecting the induction of PD-L1 expression in human NSCLC cell lines as well as their susceptibility to HLA class I antigen matched PBMCs incubated with anti-PD-1 monoclonal antibody nivolumab. The induction of PD-L1 expression by rs822336 was mediated by a competitive allele-specificity binding of two identified transcription factors: C/EBPß and NFIC. As a result, silencing of C/EBPß and NFIC differentially regulated the induction of PD-L1 expression in human NSCLC cell lines carrying different rs822336 genotypes. Analysis by binding microarray further validated the competitive allele-specificity binding of C/EBPß and NFIC to PD-L1 promoter/enhancer region based on rs822336 genotype in human NSCLC cell lines. These findings have high clinical relevance since identify rs822336 and induction of PD-L1 expression as novel biomarkers for predicting anti-PD-1/PD-L1-based immunotherapy in advanced NSCLC patients.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição NFI/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
CNS Neurosci Ther ; 30(2): e14603, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332649

RESUMO

INTRODUCTION: Genetic factors play a major part in mediating intracranial aneurysm (IA) rupture. However, research on the role of transcription factors (TFs) in IA rupture is rare. AIMS: Bioinformatics analysis was performed to explore the TFs and related functional pathways involved in IA rupture. RESULTS: A total of 63 differentially expressed transcription factors (DETFs) were obtained. Significantly enriched biological processes of these DETFs were related to regulation of myeloid leukocyte differentiation. The top 10 DETFs were screened based on the MCC algorithm from the protein-protein interaction network. After screening and validation, it was finally determined that CEBPB may be the hub gene for aneurysm rupture. The GSEA results of CEBPB were mainly associated with the inflammatory response, which was also verified by the experimental model of cellular inflammation in vitro. CONCLUSION: The inflammatory and immune response may be closely associated with aneurysm rupture. CEBPB may be the hub gene for aneurysm rupture and may have diagnostic value. Therefore, CEBPB may serve as the diagnostic signature for RIAs and a potential target for intervention.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/metabolismo , Regulação da Expressão Gênica , Aneurisma Roto/genética , Aneurisma Roto/metabolismo , Imunidade , Fatores de Transcrição/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
4.
Placenta ; 148: 1-11, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325118

RESUMO

INTRODUCTION: Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication featuring impaired insulin sensitivity. MiR-155-5p is associated with various metabolic diseases. However, its specific role in GDM remains unclear. CCAAT enhancer binding protein beta (CEBPB), a critical role in regulating glucolipid metabolism, has been identified as a potential target of miR-155-5p. This study aims to investigate the impact of miR-155-5p and CEBPB on insulin sensitivity of trophoblasts in GDM. METHODS: Placental tissues were obtained from GDM and normal pregnant women; miR-155-5p expression was then evaluated by RT‒qPCR and CEBPB expression by western blot and immunohistochemical staining. To investigate the impact of miR-155-5p on insulin sensitivity and CEBPB expression, HTR-8/SVneo cells were transfected with either miR-155-5p mimic or inhibitor under basal and insulin-stimulated conditions. Cellular glucose uptake consumption was quantified using a glucose assay kit. Furthermore, the targeting relationship between miR-155-5p and CEBPB was validated using a dual luciferase reporter assay. RESULTS: Reduced miR-155-5p expression and elevated CEBPB expression were observed in GDM placentas and high glucose treated HTR8/SVneo cells. The overexpression of miR-155-5p significantly enhanced insulin signaling and glucose uptake in trophoblasts. Conversely, inhibiting miR-155-5p induced the opposite effects. Additionally, CEBPB was directly targeted and negatively regulated by miR-155-5p in HTR8/SVneo cells. Silencing CEBPB effectively restored the inhibitory effect of miR-155-5p downregulation on insulin sensitivity in trophoblasts. DISCUSSION: These findings suggest that miR-155-5p could enhance insulin sensitivity in trophoblasts by targeting CEBPB, highlighting the potential of miR-155-5p as a therapeutic target for improving the intrauterine hyperglycemic environment in GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , MicroRNAs , Humanos , Feminino , Gravidez , Diabetes Gestacional/metabolismo , Placenta/metabolismo , MicroRNAs/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Trofoblastos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Proliferação de Células
5.
Cell Death Differ ; 31(3): 265-279, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38383888

RESUMO

PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we developed a novel approach to clustering parameter optimization called "Cluster Similarity Scoring and Distinction Index" (CaSSiDI). We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB's effect on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a segregation of the WT RPM population into a CD68loIrf8+ "neuronal-primed" subset and an CD68hiFtl1+ "iron-loaded" subset. Our results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Macrófagos , Receptores Imunológicos , Análise de Célula Única , Animais , Camundongos , Macrófagos/metabolismo , Monócitos/metabolismo , Células Mieloides/metabolismo , Receptores de Superfície Celular , Receptores Imunológicos/metabolismo , Análise de Célula Única/métodos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(1): 156-165, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38293987

RESUMO

OBJECTIVE: To explore the activation of tumor necrosis factor-α (TNF-α) signaling pathway and the expressions of the associated inflammatory factors in NPHP1-defective renal tubular epithelial cells. METHODS: A human proximal renal tubular cell (HK2) model of lentivirus-mediated NPHP1 knockdown (NPHP1KD) was constructed, and the expressions of TNF-α, p38, and C/EBPß and the inflammatory factors CXCL5, CCL20, IL-1ß, IL-6 and MCP-1 were detected using RT-qPCR, Western blotting or enzyme-linked immunosorbent assay. A small interfering RNA (siRNA) was transfected in wild-type and NPHP1KDHK2 cells, and the changes in the expressions of TNF-α, p38, and C/EBPß and the inflammatory factors were examined. RESULTS: NPHP1KDHK2 cells showed significantly increased mRNA expressions of TNF-α, C/EBPß, CXCL5, IL-1ß, and IL-6 (P < 0.05), protein expressions of phospho-p38 and C/EBPß (P < 0.05), and IL-6 level in the culture supernatant (P < 0.05), and these changes were significantly blocked by transfection of cells with siRNA-C/EBPß (P < 0.05). CONCLUSION: TNF-α signaling pathway is activated and its associated inflammatory factors are upregulated in NPHP1KDHK2 cells, and C/EBPß may serve as a key transcription factor to mediate these changes.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Fator de Necrose Tumoral alfa , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
7.
Nat Commun ; 15(1): 811, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280871

RESUMO

Eosinophils are a group of granulocytes well known for their capacity to protect the host from parasites and regulate immune function. Diverse biological roles for eosinophils have been increasingly identified, but the developmental pattern and regulation of the eosinophil lineage remain largely unknown. Herein, we utilize the zebrafish model to analyze eosinophilic cell differentiation, distribution, and regulation. By identifying eslec as an eosinophil lineage-specific marker, we establish a Tg(eslec:eGFP) reporter line, which specifically labeled cells of the eosinophil lineage from early life through adulthood. Spatial-temporal analysis of eslec+ cells demonstrates their organ distribution from larval stage to adulthood. By single-cell RNA-Seq analysis, we decipher the eosinophil lineage cells from lineage-committed progenitors to mature eosinophils. Through further genetic analysis, we demonstrate the role of Cebp1 in balancing neutrophil and eosinophil lineages, and a Cebp1-Cebpß transcriptional axis that regulates the commitment and differentiation of the eosinophil lineage. Cross-species functional comparisons reveals that zebrafish Cebp1 is the functional orthologue of human C/EBPεP27 in suppressing eosinophilopoiesis. Our study characterizes eosinophil development in multiple dimensions including spatial-temporal patterns, expression profiles, and genetic regulators, providing for a better understanding of eosinophilopoiesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Eosinófilos , Peixe-Zebra , Animais , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Eosinófilos/metabolismo , Neutrófilos/metabolismo , Peixe-Zebra/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
8.
Int J Biol Macromol ; 254(Pt 3): 127922, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944732

RESUMO

Major depressive disorder (MDD) is a highly prevalent condition and one of the most common psychiatric disorders worldwide. Circular RNA (circRNA) has been increasingly implicated in MDD. However, a comprehensive understanding of circRNA and microglial apoptosis in depression is incomplete. Here, we show that circDYM inhibits microglial apoptosis induced by LPS via CEBPB/ZC3H4 axis. CircDYM prevents the translocation of CEBPB from cytoplasm to the nucleus by binding with CEBPB. Moreover, LPS-induced CEBPB nuclear entry downregulates the expression of ZC3H4, in which promotes autophagy and apoptosis in microglia. Taken together, our findings provide new insights into the relationship between circDYM and microglial apoptosis and shed new light on the function of this novel mechanism in depression-associated complex changes in the brain.


Assuntos
Transtorno Depressivo Maior , Microglia , Humanos , Camundongos , Animais , Microglia/metabolismo , Transdução de Sinais , Lipopolissacarídeos/farmacologia , Depressão , Transtorno Depressivo Maior/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Apoptose , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
9.
Am J Physiol Cell Physiol ; 326(1): C304-C316, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047305

RESUMO

It is known that pulmonary vascular leakage, a key pathological feature of sepsis-induced lung injury, is largely regulated by perivascular cells. However, the underlying mechanisms have not been fully uncovered. In the present study, we aimed to evaluate the role of isthmin1, a secretory protein originating from alveolar epithelium, in the pulmonary vascular leakage during sepsis and to investigate the regulatory mechanisms of isthmin1 gene transcription. We observed an elevated isthmin1 gene expression in the pulmonary tissue of septic mice induced by cecal ligation and puncture (CLP), as well as in primary murine alveolar type II epithelial cells (ATII) exposed to lipopolysaccharide (LPS). Furthermore, we confirmed that isthmin1 derived from ATII contributes to pulmonary vascular leakage during sepsis. Specifically, adenovirus-mediated isthmin1 disruption in ATII led to a significant attenuation of the increased pulmonary microvascular endothelial cell (PMVEC) hyperpermeability in a PMVEC/ATII coculture system when exposed to LPS. In addition, adeno-associated virus 9 (AAV9)-mediated knockdown of isthmin1 in the alveolar epithelium of septic mice significantly attenuated pulmonary vascular leakage. Finally, mechanistic studies unveiled that nuclear transcription factor CCAAT/enhancer binding protein (C/EBP)ß participates in isthmin1 gene activation by binding directly to the cis-regulatory element of isthmin1 locus and may contribute to isthmin1 upregulation during sepsis. Collectively, the present study highlighted the impact of the paracrine protein isthmin1, derived from ATII, on the exacerbation of pulmonary vascular permeability in sepsis and revealed a new regulatory mechanism for isthmin1 gene transcription.NEW & NOTEWORTHY This article addresses the role of the alveolar epithelial-secreted protein isthmin1 on the exacerbation of pulmonary vascular permeability in sepsis and identified nuclear factor CCAAT/enhancer binding protein (C/EBP)ß as a new regulator of isthmin1 gene transcription. Targeting the C/EBPß-isthmin1 regulatory axis on the alveolar side would be of great value in the treatment of pulmonary vascular leakage and lung injury induced by sepsis.


Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Permeabilidade Capilar/fisiologia , Técnicas de Cocultura , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Lesão Pulmonar/genética , Sepse/patologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
10.
J Enzyme Inhib Med Chem ; 39(1): 2287420, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058285

RESUMO

The phytochemical investigation of the methanol extract of the seeds of Magydaris pastinacea afforded two undescribed benzofuran glycosides, furomagydarins A-B (1, 2), together with three known coumarins. The structures of the new isolates were elucidated after extensive 1D and 2D NMR experiments as well as HR MS. Compound 1 was able to inhibit the COX-2 expression in RAW264.7 macrophages exposed to lipopolysaccharide, a pro-inflammatory stimulus. RT-qPCR and luciferase reporter assays suggested that compound 1 reduces COX-2 expression at the transcriptional level. Further studies highlighted the capability of compound 1 to suppress the LPS-induced p38MAPK, JNK, and C/EBPß phosphorylation, leading to COX-2 down-regulation in RAW264.7 macrophages.


Assuntos
Benzofuranos , Glicosídeos , Benzofuranos/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glicosídeos/farmacologia , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4/metabolismo , Magnoliopsida/química
11.
Cell Death Dis ; 14(11): 776, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012162

RESUMO

Dysregulation of the ubiquitin-proteasome system has been implicated in the pathogenesis of several metabolic disorders, including obesity, diabetes, and non-alcoholic fatty liver disease; however, the mechanisms controlling pathogenic metabolic disorders remain unclear. Transcription factor CCAAT/enhancer binding protein beta (C/EBPß) regulates adipogenic genes. The study showed that the expression level of C/EBPß is post-translationally regulated by the deubiquitinase ubiquitin-specific protease 1 (USP1) and that USP1 expression is remarkably upregulated during adipocyte differentiation and in the adipose tissue of mice fed a high-fat diet (HFD). We found that USP1 directly interacts with C/EBPß. Knock-down of USP1 decreased C/EBPß protein stability and increased its ubiquitination. Overexpression of USP1 regulates its protein stability and ubiquitination, whereas catalytic mutant of USP1 had no effect on them. It suggests that USP1 directly deubiquitinases C/EBPß and increases the protein expression, leading to adipogenesis and lipid accumulation. Notably, the USP1-specific inhibitor ML323-originally developed to sensitize cancer cells to DNA-damaging agents-decreased adipocyte differentiation and lipid accumulation in 3T3-L1 cells without cytotoxicity. Oral gavage of ML323 was administered to HFD-fed mice, which showed weight loss and improvement in insulin and glucose sensitivity. Both fat mass and adipocyte size in white adipose tissues were significantly reduced by ML323 treatment, which also reduced the expression of genes involved in adipogenesis and inflammatory responses. ML323 also reduced lipid accumulation, hepatic triglycerides, free fatty acids, and macrophage infiltration in the livers of HFD-fed mice. Taken together, we suggest that USP1 plays an important role in adipogenesis by regulating C/EBPß ubiquitination, and USP1-specific inhibitor ML323 is a potential treatment option and further study by ML323 is needed for clinical application for metabolic disorders.


Assuntos
Adipogenia , Proteína beta Intensificadora de Ligação a CCAAT , Doenças Metabólicas , Proteases Específicas de Ubiquitina , Animais , Camundongos , Células 3T3-L1 , Adipogenia/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Enzimas Desubiquitinantes , Dieta Hiperlipídica , PPAR gama/metabolismo , Triglicerídeos , Proteases Específicas de Ubiquitina/genética
12.
Cell Rep ; 42(11): 113368, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37917581

RESUMO

Ischemic brain injury is a severe medical condition with high incidences in elderly people without effective treatment for the resulting neural damages. Using a unilateral mouse stroke model, we analyze single-cell transcriptomes of ipsilateral and contralateral cortical penumbra regions to objectively reveal molecular events with single-cell resolution at 4 h and 1, 3, and 7 days post-injury. Here, we report that neurons are among the first cells that sense the lack of blood supplies by elevated expression of CCAAT/enhancer-binding protein ß (C/EBPß). To our surprise, the canonical inflammatory cytokine gene targets for C/EBPß, including interleukin-1ß (IL-1ß) and tumor necrosis factor α (TNF-α), are subsequently induced also in neuronal cells. Neuronal-specific silencing of C/EBPß or IL-1ß and TNF-α substantially alleviates downstream inflammatory injury responses and is profoundly neural protective. Taken together, our findings reveal a neuronal inflammatory mechanism underlying early pathological triggers of ischemic brain injury.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Idoso , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação da Expressão Gênica , Neurônios/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Modelos Animais de Doenças , Lesões Encefálicas/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
13.
Front Immunol ; 14: 1250942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781386

RESUMO

C-reactive protein (CRP) is an evolutionary highly conserved protein. Like humans, CRP acts as a major acute phase protein in pigs. While CRP regulatory mechanisms have been extensively studied in humans, little is known about the molecular mechanisms that control pig CRP gene expression. The main goal of the present work was to study the regulatory mechanisms and identify functional genetic variants regulating CRP gene expression and CRP blood levels in pigs. The characterization of the porcine CRP proximal promoter region revealed a high level of conservation with both cow and human promoters, sharing binding sites for transcription factors required for CRP expression. Through genome-wide association studies and fine mapping, the most associated variants with both mRNA and protein CRP levels were localized in a genomic region 39.3 kb upstream of CRP. Further study of the region revealed a highly conserved putative enhancer that contains binding sites for several transcriptional regulators such as STAT3, NF-kB or C/EBP-ß. Luciferase reporter assays showed the necessity of this enhancer-promoter interaction for the acute phase induction of CRP expression in liver, where differences in the enhancer sequences significantly modified CRP activity. The associated polymorphisms disrupted the putative binding sites for HNF4α and FOXA2 transcription factors. The high correlation between HNF4α and CRP expression levels suggest the participation of HNF4α in the regulatory mechanism of porcine CRP expression through the modification of its binding site in liver. Our findings determine, for the first time, the relevance of a distal regulatory element essential for the acute phase induction of porcine CRP in liver and identify functional polymorphisms that can be included in pig breeding programs to improve immunocompetence.


Assuntos
Proteína C-Reativa , Transcrição Gênica , Feminino , Bovinos , Humanos , Animais , Suínos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Estudo de Associação Genômica Ampla , Fígado/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Mutação
14.
Nat Commun ; 14(1): 6577, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852961

RESUMO

Alzheimer's disease (AD) is the most common dementia. It is known that women with one ApoE4 allele display greater risk and earlier onset of AD compared with men. In mice, we previously showed that follicle-stimulating hormone (FSH), a gonadotropin that rises in post-menopausal females, activates its receptor FSHR in the hippocampus, to drive AD-like pathology and cognitive impairment. Here we show in mice that ApoE4 and FSH jointly trigger AD-like pathogenesis by activating C/EBPß/δ-secretase signaling. ApoE4 and FSH additively activate C/EBPß/δ-secretase pathway that mediates APP and Tau proteolytic fragmentation, stimulating Aß and neurofibrillary tangles. Ovariectomy-provoked AD-like pathologies and cognitive defects in female ApoE4-TR mice are ameliorated by anti-FSH antibody treatment. FSH administration facilitates AD-like pathologies in both young male and female ApoE4-TR mice. Furthermore, FSH stimulates AD-like pathologies and cognitive defects in ApoE4-TR mice, but not ApoE3-TR mice. Our findings suggest that in mice, augmented FSH in females with ApoE4 but not ApoE3 genotype increases vulnerability to AD-like process by activating C/EBPß/δ-secretase signalling.


Assuntos
Doença de Alzheimer , Animais , Feminino , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hormônio Foliculoestimulante , Camundongos Transgênicos
15.
Cell Mol Biol Lett ; 28(1): 79, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828427

RESUMO

BACKGROUND: Lupus nephritis (LN) is associated with significant mortality and morbidity, while effective therapeutics and biomarkers are limited since the pathogenesis is complex. This study investigated the roles of the CEBPB/BZW1/eIF2α axis in metabolic reprogramming and endoplasmic reticulum stress in LN. METHOD: The differentially expressed genes in LN were screened using bioinformatics tools. The expression of CEBPB in the renal tissue of patients with LN and its correlation with the levels of creatinine and urinary protein were analyzed. We used adenoviral vectors to construct LN mice with knockdown CEBPB using MRL/lpr lupus-prone mice and analyzed the physiological and autoimmune indices in mice. Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and dual-luciferase reporter assays were conducted to explore the regulation of BZW1 by CEBPB, followed by glycolytic flux analysis, glucose uptake, and enzyme-linked immunosorbent assay (ELISA). Finally, the role of eIF2α phosphorylation by BZW1 in bone marrow-derived macrophages (BMDM) was explored using eIF2α phosphorylation and endoplasmic reticulum stress inhibitors. RESULTS: CEBPB was significantly increased in renal tissues of patients with LN and positively correlated with creatinine and urine protein levels in patients. Downregulation of CEBPB alleviated the autoimmune response and the development of nephritis in LN mice. Transcriptional activation of BZW1 by CEBPB-mediated glucose metabolic reprogramming in macrophages, and upregulation of BZW1 reversed the mitigating effect of CEBPB knockdown on LN. Regulation of eIF2α phosphorylation levels by BZW1 promoted endoplasmic reticulum stress-amplified inflammatory responses in BMDM. CONCLUSION: Transcriptional activation of BZW1 by CEBPB promoted phosphorylation of eIF2α to promote macrophage glycolysis and endoplasmic reticulum stress in the development of LN.


Assuntos
Estresse do Retículo Endoplasmático , Nefrite Lúpica , Animais , Humanos , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Ciclo Celular/metabolismo , Creatinina , Proteínas de Ligação a DNA/metabolismo , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos MRL lpr , Fosforilação
16.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717172

RESUMO

Aging is the consequence of intra- and extracellular events that promote cellular senescence. Dyskeratosis congenita (DC) is an example of a premature aging disorder caused by underlying telomere/telomerase-related mutations. Cells from these patients offer an opportunity to study telomere-related aging and senescence. Our previous work has found that telomere shortening stimulates DNA damage responses (DDRs) and increases reactive oxygen species (ROS), thereby promoting entry into senescence. This work also found that telomere elongation via TERT expression, the catalytic component of the telomere-elongating enzyme telomerase, or p53 shRNA could decrease ROS by disrupting this telomere-DDR-ROS pathway. To further characterize this pathway, we performed a CRISPR/Cas9 knockout screen to identify genes that extend life span in DC cells. Of the cellular clones isolated due to increased life span, 34% had a guide RNA (gRNA) targeting CEBPB, while gRNAs targeting WSB1, MED28, and p73 were observed multiple times. CEBPB is a transcription factor associated with activation of proinflammatory response genes suggesting that inflammation may be present in DC cells. The inflammatory response was investigated using RNA sequencing to compare DC and control cells. Expression of inflammatory genes was found to be significantly elevated (P < 0.0001) in addition to a key subset of these inflammation-related genes [IL1B, IL6, IL8, IL12A, CXCL1 (GROa), CXCL2 (GROb), and CXCL5]. which are regulated by CEBPB. Exogenous TERT expression led to downregulation of RNA/protein CEBPB expression and the inflammatory response genes suggesting a telomere length-dependent mechanism to regulate CEBPB. Furthermore, unlike exogenous TERT and p53 shRNA, CEBPB shRNA did not significantly decrease ROS suggesting that CEBPB's contribution in DC cells' senescence is ROS independent. Our findings demonstrate a key role for CEBPB in engaging senescence by mobilizing an inflammatory response within DC cells.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Espécies Reativas de Oxigênio/metabolismo , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Mutação , Telômero/genética , Telômero/metabolismo , RNA Interferente Pequeno/metabolismo , Fibroblastos/metabolismo , Inflamação/genética , Complexo Mediador/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
17.
Gene ; 884: 147675, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541559

RESUMO

BACKGROUND: The transcription factor CCAAT/enhancer-binding protein ß (C/EBPß) is implicated in diverse processes and diseases. Its two isoforms, namely liver-enriched activator protein (LAP) and liver-enriched inhibitor protein (LIP) are translated from the same mRNA. They share the same C-terminal DNA binding domain except LAP has an extra N-terminal activation domain. Probably due to its higher affinity for its DNA cognate sequences, LIP can inhibit LAP transcriptional activity even at substoichiometric levels. However, the regulatory mechanism of C/EBPß gene expression and the LAP: LIP ratio is unclear. METHODS: In this study, the C/EBPß promoter sequence was scanned for conserved P53 response element (P53RE), and binding of P53 to the C/EBPß promoter was tested by Electrophoretic Mobility Shift Assay (EMSA) and chromatin immunoprecipitation assay. P53 over-expression and dominant negative P53 expression plasmids were transfected into rat lung fibroblasts and tested for C/EBPß gene transcription and expression. Western blot analysis was used to test the regulation of C/EBPß LAP and LIP isoforms. Constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region were used to test the importance of 5'UTR in the control of C/EBPß LAP and LIP translation. RESULTS: The C/EBPß promoter sequence was found to contain a conserved P53 response element (P53RE), which binds P53 as demonstrated by Electrophoresis Mobility Shift Assay and chromatin immunoprecipitation assays. P53 over-expression suppressed while dominant negative P53 stimulated C/EBPß gene transcription and expression. Western blot analysis showed that P53 differentially regulated the translation of the C/EBPß LAP and LIP isoforms through the regulation of eIF4E and eIF4E-BP1. Further studies with constructs containing the LAP 5'untranslated region (5'UTR) or the LIP 5'UTR region showed that the 5'UTR is important in differential control of C/EBPß LAP and LIP translation. CONCLUSION: Analysis of the effects of P53 on C/EBPß expression revealed a novel mechanism by which P53 could antagonize the effects of C/EBPß on its target gene expression. For the first time, P53 is shown to be a repressor of C/EBPß gene expression at both transcriptional and translational levels, with a differential effect in the magnitude of the effect on LAP vs. LIP isoforms.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteína Supressora de Tumor p53 , Ratos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Regiões 5' não Traduzidas/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Isoformas de Proteínas/metabolismo , Expressão Gênica , DNA/metabolismo , Ligação Proteica
18.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446309

RESUMO

The rapid growth of wireless electronic devices has raised concerns about the harmful effects of leaked electromagnetic radiation (EMR) on human health. Even though numerous studies have been carried out to explore the biological effects of EMR, no clear conclusions have been drawn about the effect of radio frequency (RF) EMR on oligodendrocytes. To this end, we exposed oligodendroglia and three other types of brain cells to 2.4 GHz EMR for 6 or 48 h at an average input power of 1 W in either a continuous wave (CW-RF) or a pulse-modulated wave (PW-RF, 50 Hz pulse frequency, 1/3 duty cycle) pattern. RNA sequencing, RT-qPCR, and Western blot were used to examine the expression of C/EBPß and its related genes. Multiple reaction monitoring (MRM) was used to examine the levels of expression of C/EBPß-interacting proteins. Our results showed that PW-RF EMR significantly increased the mRNA level of C/EBPß in oligodendroglia but not in other types of cells. In addition, the expression of three isoforms and several interacting proteins and targeted genes of C/EBPß were markedly changed after 6-h PW-RF but not CW-RF. Our results indicated that RF EMR regulated the expression and functions of C/EBPß in a waveform- and cell-type-dependent manner.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Regulação da Expressão Gênica , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Isoformas de Proteínas/metabolismo , Oligodendroglia/metabolismo
19.
Biochem Biophys Res Commun ; 672: 27-35, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331168

RESUMO

Pluripotent stem cells possess the potential to differentiate into all three germ layers. However, upon removal of the stemness factors, pluripotent stem cells, such as embryonic stem cells (ESCs), exhibit EMT-like cell behavior and lose stemness signatures. This process involves the membrane translocation of the t-SNARE protein syntaxin4 (Stx4) and the expression of the intercellular adhesion molecule P-cadherin. The forced expression of either of these elements induces the emergence of such phenotypes even in the presence of stemness factors. Interestingly, extracellular Stx4, but not P-cadherin, appears to induce a significant upregulation of the gastrulation-related gene brachyury, along with a slight upregulation of the smooth muscle cell-related gene ACTA2 in ESCs. Furthermore, our findings reveal that extracellular Stx4 plays a role in preventing the elimination of CCAAT enhancer binding protein ß (C/EBPß). Notably, the forced overexpression of C/EBPß led to the downregulation of brachyury and a significant upregulation of ACTA2 in ESCs. These observations suggest that extracellular Stx4 contributes to early mesoderm induction while simultaneously activating an element that alters the differentiation state. The fact that a single differentiation cue can elicit multiple differentiation responses may reflect the challenges associated with achieving sensitive and directed differentiation in cultured stem cells.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Células-Tronco Pluripotentes , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias , Caderinas/metabolismo , Células Cultivadas
20.
Funct Integr Genomics ; 23(2): 191, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249689

RESUMO

As a key component of Transforming growth factor-ß (TGF-ß) pathway, Smad2 has many crucial roles in a variety of cellular processes, but it cannot bind DNA without complex formation with Smad4. In the present study, the molecular mechanism in the progress of myogenesis underlying transcriptional regulation of SMAD2 and SMAD4 had been clarified. The result showed the inhibition between SMAD2 and SMAD4, which promotes and inhibits bovine myoblast differentiation, respectively. Further, the characterization of promoter region of SMAD2 and SMAD4 was analyzed, and identified C/EBPß directly bound to the core region of both SMAD2 and SMAD4 genes promoter and stimulated the transcriptional activity. However, C/EBPß has lower expression in myoblasts which plays vital function in the transcriptional networks controlling adipogenesis, while the overexpression of C/EBPß gene in myoblasts significantly increased SMAD2 and SMAD4 gene expression, induced the formation of lipid droplet in bovine myoblasts, and promoted the expression of adipogenesis-specific genes. Collectively, our results showed that C/EBPß may play an important role in the trans-differentiation and dynamic equilibrium of myoblasts into adipocyte cells via promoting an increase in SMAD2 and SMAD4 gene levels. These results will provide an important basis for further understanding of the TGFß pathway and C/EBPß gene during myogenic differentiation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Gotículas Lipídicas , Animais , Bovinos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Gotículas Lipídicas/metabolismo , Transdução de Sinais/genética , Diferenciação Celular , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Mioblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...